Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures.

نویسندگان

  • Ji Wang
  • Emily M Stein
  • Bin Zhou
  • Kyle K Nishiyama
  • Y Eric Yu
  • Elizabeth Shane
  • X Edward Guo
چکیده

Postmenopausal women with vertebral fractures have abnormal bone microarchitecture at the distal radius and tibia by HR-pQCT, independent of areal BMD. However, whether trabecular plate and rod microarchitecture is altered in women with vertebral fractures is unknown. This study aims to characterize the abnormalities of trabecular plate and rod microarchitecture, cortex, and bone stiffness in postmenopausal women with vertebral fractures. HR-pQCT images of distal radius and tibia were acquired from 45 women with vertebral fractures and 45 control subjects without fractures. Trabecular and cortical compartments were separated by an automatic segmentation algorithm and subjected to individual trabecula segmentation (ITS) analysis for measuring trabecular plate and rod morphology and cortical bone evaluation for measuring cortical thickness and porosity, respectively. Whole bone and trabecular bone stiffness were estimated by finite element analysis. Fracture and control subjects did not differ according to age, race, body mass index, osteoporosis risk factors, or medication use. Women with vertebral fractures had thinner cortices, and larger trabecular area compared to the control group. By ITS analysis, fracture subjects had fewer trabecular plates, less axially aligned trabeculae and less trabecular connectivity at both the radius and the tibia. Fewer trabecular rods were observed at the radius. Whole bone stiffness and trabecular bone stiffness were 18% and 22% lower in women with vertebral fractures at the radius, and 19% and 16% lower at the tibia, compared with controls. The estimated failure load of the radius and tibia were also reduced in the fracture subjects by 13% and 14%, respectively. In summary, postmenopausal women with vertebral fractures had both trabecular and cortical microstructural deterioration at the peripheral skeleton, with a preferential loss of trabecular plates and cortical thinning. These microstructural deficits translated into lower whole bone and trabecular bone stiffness at the radius and tibia. Our results suggest that abnormalities in trabecular plate and rod microstructure may be important mechanisms of vertebral fracture in postmenopausal women.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal Microarchitecture and Reduced Stiffness at the Radius and Tibia in Postmenopausal Women With Fractures

Measurement of areal bone mineral density (aBMD) by dual-energy x-ray absorptiometry (DXA) has been shown to predict fracture risk. High-resolution peripheral quantitative computed tomography (HR-pQCT) yields additional information about volumetric BMD (vBMD), microarchitecture, and strength that may increase understanding of fracture susceptibility. Women with (n = 68) and without (n = 101) a ...

متن کامل

Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures.

The primary goal of this study was to assess peripheral bone microarchitecture and strength in postmenopausal women with type 2 diabetes with fragility fractures (DMFx) and to compare them with postmenopausal women with type 2 diabetics without fractures (DM). Secondary goals were to assess differences in nondiabetic postmenopausal women with fragility fractures (Fx) and nondiabetic postmenopau...

متن کامل

Individual Trabeculae Segmentation (ITS)–Based Morphological Analysis of High-Resolution Peripheral Quantitative Computed Tomography Images Detects Abnormal Trabecular Plate and Rod Microarchitecture in Premenopausal Women With Idiopathic Osteoporosis

Idiopathic osteoporosis (IOP) in premenopausal women is a poorly understood entity in which otherwise healthy women have low-trauma fracture or very low bone mineral density (BMD). In this study, we applied individual trabeculae segmentation (ITS)-based morphological analysis to high-resolution peripheral quantitative computed tomography (HR-pQCT) images of the distal radius and distal tibia to...

متن کامل

Value of Measuring Bone Microarchitecture in Fracture Discrimination in Older Women with Recent Hip Fracture: A Case-control Study with HR-pQCT

We aimed to determine whether loss of volumetric bone mineral density (vBMD) and deterioration of microarchitecture imaged by high-resolution peripheral quantitative computed tomography at the distal radius/tibia provided additional information in fracture discrimination in postmenopausal women with recent hip fracture. This case-control study involved 24 postmenopausal Chinese women with unila...

متن کامل

Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture.

BACKGROUND Measurement of bone mineral density by dual x-ray absorptiometry combined with clinical risk factors is currently the gold standard in diagnosing osteoporosis. Advanced imaging has shown that older patients with fragility fractures have poor bone microarchitecture, often independent of low bone mineral density. We hypothesized that premenopausal women with a fracture of the distal en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2016